Emotional speech synthesis
Technologies and research approaches

Marc Schröder, DFKI
with contributions from
Olivier Rosec, France Télécom R&D
Felix Burkhardt, T-Systems

HUMAINE WP6 workshop, Paris, 10 March 2005
Overview

Speech synthesis technologies
- formant synthesis
- HMM synthesis
- diphone synthesis
- unit selection synthesis
- voice conversion

Research on emotional speech synthesis
- straightforward approach (and why not to do it)
- systematic parameter variation: Burkhardt (2001)
Overview

Speech synthesis technologies

- formant synthesis
- HMM synthesis
- diphone synthesis
- unit selection synthesis
- voice conversion

Research on emotional speech synthesis

- straightforward approach (and why not to do it)
- systematic parameter variation: Burkhardt (2001)
Speech synthesis

Text or Speech synthesis markup

- natural language processing techniques
- signal processing techniques
- Either plain text or SSML document

- Phonetic transcription
- Intonation specification
- Pausing & speech timing

Text analysis

- Prosodic parameters

Audio generation

Wave or mp3

Marc Schröder, DFKI
Speech synthesis technologies

Text or Speech synthesis markup

- text analysis

prosodic parameters

- audio generation

- Formant synthesis
- HMM-based synthesis
- Diphone synthesis
- Unit selection synthesis
- Voice conversion
Speech synthesis technologies
Formant synthesis

- Acoustic modelling of speech
- Many degrees of freedom, can potentially reproduce speech perfectly
- Rule-based formant synthesis: Imperfect rules for acoustic realisation of articulation
 => robot-like sound

Examples:
Janet Cahn (1990): angry, happy, sad, fearful
Felix Burkhardt (2001): neutral, angry, happy, sad, fearful
Speech synthesis technologies
HMM synthesis

- Hidden Markov Models trained from speech database(s)
- synthesis using acoustic model (MLSA)
 => robot-like sound

Examples:

Miyanaga et al. (2004):

Parametrise HMM output parameters using a “style control” vector

trained from corpus:
neutral 0.5 joyful joyful 1.5 joyful
interpolated interpolated

Marc Schröder, DFKI
Speech synthesis technologies

Diphone synthesis

 الانترنت

Diphones = small units of recorded speech
- from middle of one sound to middle of next sound
- e.g. [grEIt] = _-g g-r r-EI EI-t t-_

Signal manipulation to force pitch (F0) and duration into a target contour
- Can control prosody, but not voice quality

Examples:

Marc Schröder (1999):
- neutral
- angry
- happy
- sad
- fearful

Ignasi Iriondo (2004):
- angry
- happy
- sad
- fearful

Marc Schröder, DFKI
Speech synthesis technologies
Diphone synthesis

Is voice quality indispensable?
→ Interesting diversity of opinions in the literature
→ Tentative conclusion: “It depends!”
 • ...on the emotion (Montero et al., 1999)
 – prosody conveys surprise, sadness
 – voice quality conveys anger, joy
 • ...on speaker strategies (Schröder, 1999)

`angry1 orig_angry1 angry2 orig_angry2`
Speech synthesis technologies
Diphone synthesis

- Partial remedy: Record voice qualities
- Schröder & Grice (2003): Diphone databases with three levels of vocal effort
 - Male: loud, modal, soft
 - Female: loud, modal, soft

- Voice quality interpolation: Turk et al. (in prep.)
 - Female: loud 1 2, modal 3 4, soft

- Not yet successful: smiling voice
 - modal1, smile1
 - modal2, smile2
Speech synthesis technologies
Unit selection synthesis

- Select small speech units out of very large speech corpus (e.g., 5 hours of speech)
- Avoid signal manipulation to maintain natural prosody from the units
 - Cannot control prosody or voice quality
 - Very good “playback” quality with emotional recordings

Examples:

- Akemi Iida (2000): angry, happy, sad
- Ellen Eide (IBM, 2004): good news, bad news
Speech synthesis technologies
Voice conversion – How to learn a new voice?

- Learning data needed: about 5 minutes
- Transformed parameters: timbre and F_0
- Conversion techniques: VQ, GMM, …
- Potential application to emotion
 - source = neutral speech
 - target = emotional speech
Speech synthesis technologies
Voice conversion – Transformation step

Analysis / synthesis: LPC, formant or HNM

Output quality of the converted speech

- Can be fairly good in terms of speaker (/emotion?) identification
- Degradation of naturalness

Example for speaker transformation:

France Télécom
speech synthesis team:

source

target

conversion

Marc Schröder, DFKI
Speech synthesis technologies: Summary

Current choice:
- "Explicit modelling" approaches
 - low naturalness
 - high flexibility, high control over acoustic parameters
 - explicit models of emotional prosody
- "Playback" approaches
 - high naturalness
 - no flexibility, no control over acoustic parameters
 - emotional prosody implicit in recordings

Technical challenge over next years:
combine the best of both worlds!
Overview

Speech synthesis technologies

- formant synthesis
- HMM synthesis
- diphone synthesis
- unit selection synthesis
- voice conversion

Research on emotional speech synthesis

- straightforward approach (and why not to do it)
- systematic parameter variation: Burkhardt (2001)
Research on emotional speech synthesis

The “straightforward” approach
(and why not to do it)

The “straightforward” approach

- record one actor with four emotions
 - anger, fear, sadness, joy (+neutral)
- measure acoustic correlates
 - overall pitch level + range, tempo, intensity
 - copy synthesis or prosody rules, synthesise
- forced-choice perception test with “neutral” text
 - overall recognition rates
- ...and then?

“there has been neither continuity nor cumulativeness in the area of the vocal communication of emotion”

(Scherer, 1986, p. 143)
Research on emotional speech synthesis

The “straightforward” approach
(and why not to do it)

- record one actor with four emotions
 - anger, fear, sadness, joy (+neutral)
- measure acoustic correlates
 - overall pitch level + range, tempo, intensity
- copy synthesis or prosody rules, synthesise
- forced-choice perception test with “neutral” text

...and then?

- overall recognition rates

"there has been neither continuity nor cumulativeness in the area of the vocal communication of emotion"

(Scherer, 1986, p. 143)

Why these four?
Applications don't need “basic” emotions

Why these four?
Applications don't need “basic” emotions

Emotion words too ambiguous – use frame stories when recording

More and different parameters needed: voice quality!

Needed: quality control (e.g., expert rating)

May not be representative

Lose interaction with linguistic structure

Lose local effects

Unexpected percepts?

Applications need suitability, not recognition

How bad are errors?
Need measure of semantic similarity of states

Untypical for applications
Research on emotional speech synthesis

The “straightforward” approach (and why not to do it)

- record one actor with four emotions: anger, fear, sadness, joy (+neutral)
- measure acoustic correlates: overall pitch level + range, tempo, intensity
 - copy synthesis or prosody rules, synthesise
 - forced-choice perception test with “neutral” text
 - overall recognition rates

...and then?

- there has been neither continuity nor cumulativeness in the area of the vocal communication of emotion
 - (Scherer, 1986, p. 143)

Why these four?

- Applications don't need “basic” emotions

May not be representative

- Emotion words too ambiguous – use frame stories when recording
- Applications don't need “basic” emotions
- Needed: quality control (e.g., expert rating)

lose local effects

- more and different parameters needed: voice quality!

lose interaction with linguistic structure

- Unexpected percepts?

Applications need suitability, not recognition

How bad are errors?

- Need measure of semantic similarity of states
- Untypical for applications
Emotional speech synthesis research
Listener-centred orientation
Emotional speech synthesis research

Listener-centred approach: Burkhardt (2001)

Stimuli: systematically varied selected acoustic features using formant synthesis

- pitch height (3 variants)
- pitch range (3 variants)
- phonation (5 variants)
- segment durations (4 variants)
- vowel quality (3 variants)

One semantically neutral sentence

- Complete factorial design would be >2000 stimuli

- tested three groups of parameters combinations
 - Pitch/Phonation: 45 stimuli, Pitch/Segmental: 108 stimuli, Phonation/Segmental: 60 stimuli
Emotional speech synthesis research

Listener-centred approach: Burkhardt (2001)

- Forced choice perception test
 - neutral, fear, anger, joy, sadness, boredom

=> Perceptually optimal values for each category

- Second step:
 - varied additional acoustic parameters
 - further differentiation into subcategories:
 - hot/cold anger, joy/happiness, despair/sorrow
Emotional speech synthesis research
Dimensional approach: Schröder (2004)

Goals
- Model many, gradual states on a continuum
- Allow for gradual changes over time
- Model many acoustic parameters, including voice quality

Success criterion
- Voice “fits with” the text
Emotional speech synthesis research
Dimensional approach: Description system

- Representation of emotional states in a 2-dim. space, activation-evaluation space:
 - Essential emotional properties in listeners' minds
 - Continuous

![Diagram showing emotional states in a 2D space](Image)
Emotional speech synthesis research
Dimensional approach: Emotional prosody rules

Database analysis
- Belfast Naturalistic Emotion Database: 124 speakers, spontaneous emotions
- Search for correlations between emotion dimensions and acoustic parameters

Activation
- numerous, robust correlations

Evaluation and Power
- fewer, weaker correlations

Database analysis

<table>
<thead>
<tr>
<th>Acoustic variable</th>
<th>Activation</th>
<th>Evaluation</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0 median</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>F0 range</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>range mag. F0 rises</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>med. mag. F0 falls</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>F0 falls</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>med. dur. F0 rises</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>rng. dur. F0 rises</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>med. dur. F0 falls</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>rng. dur. F0 falls</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>med. slope F0 rises</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>med. slope F0 falls</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>F0 rises p. sec.</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>F0 falls p. sec.</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempo</th>
<th>Activation</th>
<th>Evaluation</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration pauses</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>‘tune’ duration</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>intensity peaks p. sec.</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>fricat. bursts p. sec.</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intonation</th>
<th>Activation</th>
<th>Evaluation</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>intensity median</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>intensity range</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>dynamics at peaks</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voice quality</th>
<th>Activation</th>
<th>Evaluation</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>spectral slope non-fric.</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Hamm. ‘effort’</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Hamm. ‘breathy’</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Hamm. ‘head’</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Hamm. ‘coarse’</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Hamm. ‘unstable’</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Emotional speech synthesis research
Dimensional approach: Synthesis method

- Rules map each point in emotion space onto its acoustic correlates
- Flexibility: gradual build-up of emotions, non-extreme emotional states
- Emotions are not fully specified through the voice
 - complementary information required: verbal content, visual channel, situational context
Emotional speech synthesis research
Dimensional approach: Realisation in the system

written text

| text analysis |
| phonetic transcription, intonation, rhythm... |
| audio generation |

rules for intonation, speech rate,...

diphone synthesis with three voice qualities
Emotional speech synthesis research
MARY: DFKI's speech synthesis
http://mary.dfki.de

- Developed in cooperation with Institute of Phonetics, Saarland Univ.
- Languages: German, English
- Transparent and flexible
 - Modular
 - Internal MaryXML format
 - Input/output possible at all intermediate processing steps ⇒ allows for fine-grained control

Marc Schröder, DFKI
Emotional speech synthesis research

Dimensional approach: Technical realisation

<emotion activation="67" evaluation="42">
Hurra, wir haben es geschafft!
</emotion>

Emotional prosody rules (XSLT stylesheet)

<maryxml>
<prosody accent-prominence="+13%"
accent-slope="+46%" fricative-duration="+21%"
liquid-duration="+13%" nasal-duration="+13%"
number-of-pauses="+47%" pause-duration="-13%"
pitch="134" pitch-dynamics="+5%"
plosive-duration="+21%"
preferred-accent-shape="alternating"
preferred-boundary-type="high" range="52"
rhythm-dynamics="+40%" rate="+42%" volume="72"
vowel-duration="+13%">
Hurra, wir haben es geschafft!
</prosody>
</maryxml>
Emotional speech synthesis research
Dimensional approach: Listening test

- Eight emotion-specific texts
- Prosodic parameters predicted for each of the eight emotional states
- Factorise text x prosody => 64 stimuli
- Listeners evaluate stimuli on a scale
 “How well does the sound of the voice fit to the text spoken?”
Er erzählt rückblickend, wie er seine Frau kennengelernt hat. „Kennengelernt haben wir uns, als wir beide zur Uni gegangen sind. Ich weiß noch, wie ich sie das erste Mal gesehen habe: sie war am anderen Ende eines total überfüllten Raums, und sie hatte diese wundervollen großen braunen Augen.”
Emotional speech synthesis research
Dimensional approach: Listening test results

- **Activation dimension** successfully conveyed / perceived as intended
- **Evaluation dimension** less successful
- Acceptability is gradual: Neighbouring states more acceptable than distant states

Marc Schröder, DFKI
Emotional speech synthesis research
Dimensional approach: Listening test results

- **Activation dimension** successfully conveyed / perceived as intended
- **Evaluation dimension** less successful
- Acceptability is gradual: Neighbouring states more acceptable than distant states
Emotional speech synthesis research
Dimensional approach: Summary

- Flexible framework
- Successful in expressing degree of activation
- Failure to express evaluation
 - sound of the smile?!
 - specialised modalities?
 - text => evaluation
 - voice => activation
- Emotional prosody rules not fine-tuned
 - only global evaluation so far
Summary

- Speech synthesis technology
 - data-driven or flexible
- Research on emotional prosody rules
 - listener-centred task
 - database analyses to be validated perceptually
Outlook: Speech synthesis research in HUMAINE

capability 5.2: Speech expressivity
- address the dilemma of data-driven vs. flexible
- investigate suitable measures for prosody and voice quality in controlled recordings
- attempt copy synthesis using different technologies
- attempt voice conversion
- evaluate success of different methods